Twilite Calibration

Previous Topic

Next Topic

Book Contents

Book Index

Twilite Calibration

In experiments using the twilite and a PET system is necessary to cross-calibrate the two devices. This implies that the twilite coincidence count-rate for a given tracer concentration in the catheter needs to be converted into the activity concentration which the PET measures for the same tracer concentration in the field-of-view.

The following calibration procedure is recommended:

  1. PET tracer is added to water such that the activity concentration is in the range of 200-500 kBq/cc. Complete mixing should be carefully ensured. Note that ideally the same isotope should be used for calibration as in the actual experiments. The reason for this is variability in the branching ratio between isotopes, namely the ratio of positron decays to other means of decay such as electron capture. Branching ratio is accounted for during the calculation of the tracer concentration by the PET system (i.e. post-processing/calibration). While the most common PET isotopes (F-18, C-11, O-15) have branching ratios above 0.95, other isotopes used in research can differ substantially, e.g. Cu-64 (0.174) and Ga-68 (0.891).

    Note: Starting with PMOD v3.8 the branching ratio correction is available in the PSAMPLE Correction tool. information about the branching ratio is available from Turku PET Center

  2. A catheter identical to the type used in the actual experiment is filled with the tracer solution. Extreme care is required to avoid the presence of air bubbles in the catheter. Note that tap water may contain large amounts of dissolved air that can result in air bubble formation in the catheter over time.
  3. A suitable phantom is filled with the same (well-mixed) fluid. PET/MR users should ensure that attenuation correction can be accurately applied for the phantom used. Phantoms with thick plastic walls are known to cause problems, resulting in inaccurate tracer concentration in the reconstructed image.
  4. After ensuring that the system clocks of the twilite acquisition computer and PET scanner are synchronized, twilite acquisition is started as explained below without the catheter guide inserted. Background counts should be acquired for at least two minutes.
  5. Without stopping the data acquisition, the guide with filled catheter is inserted into the detector head, and counts acquired for at least two minutes. The calibration data curve thus resembles a step function.
  6. In parallel, the activity in the phantom is measured in the PET system. Typically a protocol such as 10 minute static FDG brain is used. The data should be corrected and reconstructed in the same way as in the actual experiment, resulting in a tracer concentration in kBq/cc. It is not necessary to synchronize PET and twilite acquisitions as the PSAMPLE Correction tool performs decay correction to match the scan start time.
  7. Calibration processing is performed in the PSAMPLE Correction tool as outlined below. The activity concentration measured from the PET image of the phantom and PET scan start time are required. For example, these parameters can be measured/taken from another PMOD module. The calibration factor is finally calculated by diving the PET concentration by the twilite count-rate:

    F = CPET/Rtwilite

    and has units (kBq/cc)/(counts/sec).

In practice, the calibration has to cope with the following challenges:

Recommendation: Although the calibration factor is stable over time, it is recommend that calibration is performed regularly as part of a quality control procedure.