Previous Topic

Next Topic

Book Contents

Book Index


[1] Huang SC, Phelps ME, Principles of Tracer Kinetic Modeling in Positron Emission Tomography and Autoradiography, In: M. Phelps JM, and Schelbert H, eds. Positron Emission Tomography and Autoradiography: Principles and Applications for the Brain and the Heart., New York: Raven Press; 1986: 287-346.

[2] Alpert NM, Eriksson L, Chang JY, et al. Strategy for the measurement of regional cerebral blood flow using short-lived tracers and emission tomography. J Cereb Blood Flow Metab. Mar 1984;4(1):28-34.

[3] Watabe H, Itoh M, Cunningham V, et al. Noninvasive quantification of rCBF using positron emission tomography. J Cereb Blood Flow Metab. Mar 1996;16(2):311-319.

[4] Kuwabara H, Evans AC, Gjedde A. Michaelis-Menten constraints improved cerebral glucose metabolism and regional lumped constant measurements with [18F]fluorodeoxyglucose. J Cereb Blood Flow Metab. Mar 1990;10(2):180-189.

[5] Wu HM, Huang SC, Choi Y, Hoh CK, Hawkins RA. A modeling method to improve quantitation of fluorodeoxyglucose uptake in heterogeneous tumor tissue. J Nucl Med. Feb 1995;36(2):297-306.

[6] Huang SC, Phelps ME, Hoffman EJ, Sideris K, Selin CJ, Kuhl DE. Noninvasive determination of local cerebral metabolic rate of glucose in man. Am J Physiol. Jan 1980;238(1):E69-82.

[7] Frackowiak RS, Lenzi GL, Jones T, Heather JD. Quantitative measurement of regional cerebral blood flow and oxygen metabolism in man using 15O and positron emission tomography: theory, procedure, and normal values. J Comput Assist Tomogr. Dec 1980;4(6):727-736.

[8] Mintun MA, Raichle ME, Martin WR, Herscovitch P. Brain oxygen utilization measured with O-15 radiotracers and positron emission tomography. J Nucl Med. Feb 1984;25(2):177-187.

[9] Jacquez JA, Compartmental Analysis In Biology and Medicine. 2 ed. 1985, Ann Arbor: The University of Michigan Press.

[10] Gjedde G, Wong DF, Modeling Neuroreceptor Binding of Radioligands in Vivo, In: Frost JJ and Wagner HN, eds. Quantitative Imaging: Neuroreceptors, Neurotransmitters, and Enzymes., New York: Raven Press; 1990: 51-79.

[11] Flannery BP, Press WH, Teukolsky SA, Vetterling WT, Numerical Recipes in C. 2nd edition. Cambridge: Cambridge University Press: 1992.

[12] Budinger TF, Derenzo SE, Greenberg WL, Gullberg GT, Huesman RH. Quantitative potentials of dynamic emission computed tomography. J Nucl Med. Mar 1978;19(3):309-315.

[13] Delforge J, Syrota A, Mazoyer BM. Identifiability analysis and parameter identification of an in vivo ligand-receptor model from PET data. IEEE Trans Biomed Eng. Jul 1990;37(7):653-661.

[14] Feng D, Huang SC, Wang X. Models for computer simulation studies of input functions for tracer kinetic modeling with positron emission tomography. Int J Biomed Comput. Mar 1993;32(2):95-110.

[15] Koeppe RA, Holthoff VA, Frey KA, Kilbourn MR, Kuhl DE. Compartmental analysis of [11C]flumazenil kinetics for the estimation of ligand transport rate and receptor distribution using positron emission tomography. J Cereb Blood Flow Metab. Sep 1991;11(5):735-744.

[16] Meyer E. Simultaneous correction for tracer arrival delay and dispersion in CBF measurements by the H215O autoradiographic method and dynamic PET. J Nucl Med. Jun 1989;30(6):1069-1078.

[17] Patlak CS, Blasberg RG, Fenstermacher JD. Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. J Cereb Blood Flow Metab. Mar 1983;3(1):1-7.

[18] Peters AM. Graphical analysis of dynamic data: the Patlak-Rutland plot. Nucl Med Commun. Sep 1994;15(9):669-672.

[19] Logan J, Fowler JS, Volkow ND, et al. Graphical analysis of reversible radioligand binding from time-activity measurements applied to [N-11C-methyl]-(-)-cocaine PET studies in human subjects. J Cereb Blood Flow Metab. Sep 1990;10(5):740-747.

[20] Ichise M, Ballinger JR, Golan H, et al. Noninvasive quantification of dopamine D2 receptors with iodine-123-IBF SPECT. J Nucl Med. Mar 1996;37(3):513-520.

[21] Lammertsma AA, Hume SP. Simplified reference tissue model for PET receptor studies. Neuroimage. Dec 1996;4(3 Pt 1):153-158.

[22] Buck A, Wolpers HG, Hutchins GD, et al. Effect of carbon-11-acetate recirculation on estimates of myocardial oxygen consumption by PET. J Nucl Med. Oct 1991;32(10):1950-1957.

[23] Carson RE, Channing MA, Blasberg RG, et al. Comparison of bolus and infusion methods for receptor quantitation: application to [18F]cyclofoxy and positron emission tomography. J Cereb Blood Flow Metab. Jan 1993;13(1):24-42.

[24] Ito H, Hietala J, Blomqvist G, Halldin C, Farde L. Comparison of the transient equilibrium and continuous infusion method for quantitative PET analysis of [11C]raclopride binding. J Cereb Blood Flow Metab. Sep 1998;18(9):941-950.

[25] Peitgen HO, Juergens H, and Saupe D, Chaos and Fractals. New York: Springer, 1992.

[26] Delforge J, Pappata S, Millet P, et al. Quantification of benzodiazepine receptors in human brain using PET, [11C]flumazenil, and a single-experiment protocol. J Cereb Blood Flow Metab. Mar 1995;15(2):284-300.

[27] Hermansen F, Rosen SD, Fath-Ordoubadi F, et al. Measurement of myocardial blood flow with oxygen-15 labelled water: comparison of different administration protocols. Eur J Nucl Med. Jul 1998;25(7):751-759.

[28] Lammertsma AA, Bench CJ, Hume SP, et al. Comparison of methods for analysis of clinical [11C]raclopride studies. J Cereb Blood Flow Metab. Jan 1996;16(1):42-52.

[29] Akaike, H. A new look at the statistical model identification. IEEE Trans. Automat. Contr 1974, AC19: 716-723.

[30] DeGrado TR, Hanson MW, Turkington TG, et al. Estimation of myocardial blood flow for longitudinal studies with 13N-labeled ammonia and positron emission tomography. J Nucl Cardiol. Nov-Dec 1996;3(6 Pt 1):494-507.

[31] Millet P, Graf C, Buck A, et al. Similarity and robustness of PET and SPECT binding parameters for benzodiazepine receptors. J Cereb Blood Flow Metab. Nov 2000;20(11):1587-1603.

[32] Wu Y, Carson RE. Noise reduction in the simplified reference tissue model for neuroreceptor functional imaging. J Cereb Blood Flow Metab. Dec 2002;22(12):1440-1452.

[33] Ichise M, Liow JS, Lu JQ, et al. Linearized reference tissue parametric imaging methods: application to [11C]DASB positron emission tomography studies of the serotonin transporter in human brain. J Cereb Blood Flow Metab. Sep 2003;23(9):1096-1112.

[34] Ichise M, Toyama H, Innis RB, Carson RE. Strategies to improve neuroreceptor parameter estimation by linear regression analysis. J Cereb Blood Flow Metab. Oct 2002;22(10):1271-1281.

[35] Herrero P, Markham J, Shelton ME, Bergmann SR. Implementation and evaluation of a two-compartment model for quantification of myocardial perfusion with rubidium-82 and positron emission tomography. Circ Res. Mar 1992;70(3):496-507.

[36] Logan J, Fowler JS, Volkow ND, Wang GJ, Ding YS, Alexoff DL. Distribution volume ratios without blood sampling from graphical analysis of PET data. J Cereb Blood Flow Metab. Sep 1996;16(5):834-840.

[37] Koeppe, RA. Tracer Kinetics: Principles of Compartmental Analysis and Physiologic Modeling. In Nuclear Medicine, Mosby - Year Book, Inc, 1996.

[38] Carson RE, Parameter Estimation in PET, In: M. Phelps JM, and Schelbert H, eds. Positron Emission Tomography and Autoradiography: Principles and Applications for the Brain and the Heart., New York: Raven Press; 1986: 287-346.

[39] Fujita M, Seibyl JP, Verhoeff NP, et al. Kinetic and equilibrium analyses of [(123)I]epidepride binding to striatal and extrastriatal dopamine D(2) receptors. Synapse. Dec 15 1999;34(4):290-304.

[40] Renkin EM. Transport of potassium-42 from blood to tissue in isolated mammalian skeletal muscles. Am J Physiol. Dec 1959;197:1205-1210.

[41] Crone C. Permeability of capillaries in various organs as determined by use of the indicator diffusion method. Acta Physiol Scand. 1964; 58: 292–305.

[42] Patlak CS, Blasberg RG. Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. Generalizations. J Cereb Blood Flow Metab. Dec 1985;5(4):584-590.

[43] Slifstein M, Parsey RV, Laruelle M. Derivation of [(11)C]WAY-100635 binding parameters with reference tissue models: effect of violations of model assumptions. Nucl Med Biol. Jul 2000;27(5):487-492.

[44] Lortie M, Beanlands RS, Yoshinaga K, Klein R, Dasilva JN, DeKemp RA. Quantification of myocardial blood flow with 82Rb dynamic PET imaging. Eur J Nucl Med Mol Imaging. Nov 2007;34(11):1765-1774.

[45] Hutchins GD, Schwaiger M, Rosenspire KC, Krivokapich J, Schelbert H, Kuhl DE. Noninvasive quantification of regional blood flow in the human heart using N-13 ammonia and dynamic positron emission tomographic imaging. J Am Coll Cardiol. Apr 1990;15(5):1032-1042.

[46] van den Hoff J, Burchert W, Borner AR, et al. [1-(11)C]Acetate as a quantitative perfusion tracer in myocardial PET. J Nucl Med. Aug 2001;42(8):1174-1182.

[47] Phelps ME, Simon N. PET: Molecular Imaging and its Biological Applications. New York: Springer; 2004.

[48] Nagatsuka Si S, Fukushi K, Shinotoh H, et al. Kinetic analysis of [(11)C]MP4A using a high-radioactivity brain region that represents an integrated input function for measurement of cerebral acetylcholinesterase activity without arterial blood sampling. J Cereb Blood Flow Metab. Nov 2001;21(11):1354-1366.

[49] Watabe, H et al. The reference tissue model: Three compartments for the reference region. Neuroimage 11: S12.

[50] Millet P, Graf C, Buck A, Walder B, Ibanez V. Evaluation of the reference tissue models for PET and SPECT benzodiazepine binding parameters. Neuroimage. Oct 2002;17(2):928-942.

[51] Varga J, Szabo Z. Modified regression model for the Logan plot. J Cereb Blood Flow Metab. Feb 2002;22(2):240-244.

[52] Ichise M, Cohen RM, Carson RE. Noninvasive estimation of normalized distribution volume: application to the muscarinic-2 ligand [(18)F]FP-TZTP. J Cereb Blood Flow Metab. Feb 2008;28(2):420-430.

[53] Gunn RN, Sargent PA, Bench CJ, et al. Tracer kinetic modeling of the 5-HT1A receptor ligand [carbonyl-11C]WAY-100635 for PET. Neuroimage. Nov 1998;8(4):426-440.

[54] Watabe H, Channing MA, Der MG, et al. Kinetic analysis of the 5-HT2A ligand [11C]MDL 100,907. J Cereb Blood Flow Metab. Jun 2000;20(6):899-909.

[55] Wu S, Ogden RT, Mann JJ, Parsey RV. Optimal metabolite curve fitting for kinetic modeling of 11C-WAY-100635. J Nucl Med. Jun 2007;48(6):926-931.

[56] Innis RB, Cunningham VJ, Delforge J, et al. Consensus nomenclature for in vivo imaging of reversibly binding radioligands. J Cereb Blood Flow Metab. Sep 2007;27(9):1533-1539.

[57] Cai W, Feng D, Fulton R, Siu WC. Generalized linear least squares algorithms for modeling glucose metabolism in the human brain with corrections for vascular effects. Comput Methods Programs Biomed. 2002;68(1):1-14.

[58] Motulsky H, Christopoulos A. Fitting Models to Biological Data using Linear and Nonlinear Regression. New York: Oxford University Press; 2004.

[59] Press, W.H., Teukolsky, S.A, Vetterling, W.T., Flannery, B.P., Numerical Recipes in C, Cambridge University Press, New York, 2nd edition, 1992.

[60] Zhou Y, Ye W, Brasic JR, Crabb AH, Hilton J, Wong DF. A consistent and efficient graphical analysis method to improve the quantification of reversible tracer binding in radioligand receptor dynamic PET studies. Neuroimage. 2009;44(3):661-70.

[61] Zhou Y, Ye W, Brasic JR, Wong DF. Multi-graphical analysis of dynamic PET. Neuroimage. 2010;49(4):2947-57.

[62] Ito H, Yokoi T, Ikoma Y, Shidahara M, Seki C, Naganawa M, Takahashi H, Takano H, Kimura Y, Ichise M, Suhara T. A new graphic plot analysis for determination of neuroreceptor binding in positron emission tomography studies. Neuroimage. 2010;49(1):578-86. 

[63] Sanabria-Bohorquez SM, Hamill TG, Goffin K, De Lepeleire I, Bormans G, Burns HD, Van Laere K. Kinetic analysis of the cannabinoid-1 receptor PET tracer [(18)F]MK-9470 in human brain. Eur J Nucl Med Mol Imaging;37(5):920-33.

[64] Plisson C, Gunn RN, Cunningham VJ, Bender D, Salinas CA, Medhurst AD, Roberts JC, Laruelle M, Gee AD. 11C-GSK189254: a selective radioligand for in vivo central nervous system imaging of histamine H3 receptors by PET. J Nucl Med. 2009;50(12):2064-72.

[65] Parsey RV, Ojha A, Ogden RT, Erlandsson K, Kumar D, Landgrebe M, Van Heertum R, Mann JJ. Metabolite considerations in the in vivo quantification of serotonin transporters using 11C-DASB and PET in humans. J Nucl Med. 2006;47(11):1796-802.

[66] Cunningham VJ, Jones t. Spectral Analysis of Dynamic PET Studies. J Cereb Blood Flow Metab. 1993;13(1):15-23.

[67] Lawson CL, Hanson RJ. Solving least squares problems. Englewood Cliffs, N.J.,: Prentice-Hall; 1974.

[68] Meikle SR, Matthews JC, Brock CS, Wells P, Harte RJ, Cunningham VJ, Jones T, Price P. Pharmacokinetic assessment of novel anti-cancer drugs using spectral analysis and positron emission tomography: a feasibility study. Cancer Chemother Pharmac ol. 1998;42(3):183-93.

[69] Turkheimer F, Sokoloff L, Bertoldo A, Lucignani G, Reivich M, Jaggi JL, Schmidt K. Estimation of component and parameter distributions in spectral analysis. J Cereb Blood Flow Metab. 1998;18(11):1211-22.

[70] Turkheimer FE, Hinz R, Gunn RN, Aston JA, Gunn SR, Cunningham VJ. Rank-shaping regularization of exponential spectral analysis for application to functional parametric mapping. Phys Med Biol. 2003;48(23):3819-41.

[71] Veronese M, Schmidt KC, Smith CB, Bertoldo A. Use of spectral analysis with iterative filter for voxelwise determination of regional rates of cerebral protein synthesis with L-[1-(11)C]leucine PET. J Cereb Blood Flow Metab. 2012;32(6):1073-85.

[72] Bertoldo A, Peltoniemi P, Oikonen V, Knuuti J, Nuutila P, Cobelli C: Kinetic modeling of [(18)F]FDG in skeletal muscle by PET: a four-compartment five-rate-constant model. American journal of physiology Endocrinology and metabolism 2001;281(3):E524-536.

[73] Kukreja SL, Gunn RN: Bootstrapped DEPICT for error estimation in PET functional imaging. Neuroimage 2004, 21(3):1096-1104. DOI